
	

	

Data Responsive Modular Interleaved Task Programming
System

An IP.com Prior Art Database Technical Disclosure

IP.com is the world's leader in defensive publications. The largest and most innovative companies publish their technical
disclosures into the IP.com Prior Art Database. Disclosures can be published in any language, and they are searchable in those
languages online. Unique identifiers indicate documents containing chemical structures. Original disclosures that are published
online also appear in The IP.com Journal. The IP.com Prior Art Database is freely available to search by patent examiners
throughout the world.

Terms: Client may copy any content obtained through the site for Client's individual, non-commercial internal use only. Client
agrees not to otherwise copy, change, upload, transmit, sell, publish, commercially exploit, modify, create derivative works or
distribute any content available through the site.

Note: This is a PDF rendering of the actual disclosure. To access the disclosure package containing an exact copy of the
publication in its original format as well as any attached files, please download the full document from IP.com at:
http://ip.com/IPCOM/000073741

Authors et. al.: IBM
Morrison, JP

Original Publication Date: January 01, 1971
Original Disclosure Information: TDB 01-71 p2425-2426

IP.com Number: IPCOM000073741D
IP.com Electronic Publication: February 23, 2005

http://ip.com/IPCOM/000073741
pjh
1135 Voyles

 1

Data Responsive Modular Interleaved Task Programming System

 Reduced programming costs and earlier productivity of new programmers
are achieved with a composite data processing program consisting of an
assembly of prewritten and custom-written MODULES such as 3-8,
communicating by data elements passing through QUEUES such as 11-15,
which can each store some number (called its CAPACITY) of data elements.
Each module (e.g. 6) is a program which performs a data processing task such
as COLLATE, PRINT REPORTS, READ TAPE, and EDIT CARDS on a data
element presented to it by SCHEDULER 20 via a queue (e.g. 13). Scheduler 20
activates modules (e.g. 6) on the basis of availability of data elements for
processing by the modules, service requests by the modules for data handling,
and checks for completion of external events.

 Sketch A is a FLOW DIAGRAM representation of a typical program formed
by assembling a selection of modules 3-8 into a customized array joined by a
network of queues 11-15, which are operated on and activated by scheduler 20.
16-19 represent queues which are LOCAL to particular modules (e.g. 5,6). If the
capacity of such a local queue is 1, it is called a SHUNT (e.g. 16).

 To execute his program, the programmer codes one statement for each
module in the flow diagram, the modules to be custom-written, and constant
information in core storage representing selections among options designed into
the prewritten modules. These are COMPILED, then LINK-EDITED with the
prewritten modules and scheduler 20 to form an executable program. Modules 3,
4, 7, and 8 are connected to external media represented by 1, 2, 9, and 10,
respectively, by the above constant information.

 In sketch B, Q1 and Q3 are the queues by which modules M1, M2 and MP
communicate. Q2 is local to M2. M1 and M2 are examples of prewritten
modules and are made available to the programmer in a library 21, which also
contains scheduler 20. MP is a typical module custom-written by the
programmer. A typical sequence of operation of scheduler 20 might be as
follows: scheduler 20 removes a data element from Q1, and presents it to M2 for
processing. After processing, M2 requests scheduler 20 to transmit this data
element to Q3. Scheduler 20 then determines whether Q3 is full, and, if not,
places the data element in it and returns control to M2. If Q3 is full, however, M2
is suspended, and control given to another module (e.g. MP), provided its input
queue, Q3, is not empty, or to some other suspended module provided it can
now proceed. M2 might alternatively request scheduler 20 to place a data
element in its local queue Q3, or to retrieve one from it. If scheduler 20 cannot
do this, it will return an error indication to M2, and no suspension of M2 occurs.

 Other typical functions supported by scheduler 20 are: get the next data
element from a designated queue (e.g. Q1); allocate core storage for (create) a
new data element; release core storage allocated to (destroy) a data element;
suspend a module (e.g. M1) until completion of an external event such as
completion of a write operation onto disc.

 Data elements represent objects (e.g. automobiles, employees) handled by
the program and fall into CLASSES determined by their characteristics, such as

 2

amount of storage required for an element (typically 80 bytes). Classes are
divided into DYNAMIC and STATIC. Dynamic data elements are "created", are
passed from one module to another for processing and possible modification and
are finally "destroyed". Static data elements are unmodifiable, and cannot be
"created" or "destroyed". Since data elements do not move in core storage, it is
the references to data elements which are moved through the queues by
scheduler 20. This feature allows one to program as though multiple copies of a
static data element are immediately available when needed.

 3

